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Abstract

A new method for measuring air temperature profiles in the atmospheric boundary
layer at high spatial and temporal resolution is presented. The measurements are
based on Raman scattering distributed temperature sensing (DTS) with a fiber optic
cable attached to a tethered balloon. These data were used to estimate the height5

of the stable nocturnal boundary layer. The experiment was successfully deployed
during a two-day campaign in September 2009, providing evidence that DTS is well
suited for this atmospheric application. Observed stable temperature profiles exhibit
an exponential shape confirming similarity concepts of the temperature inversion close
to the surface. The atmospheric mixing height (MH) was estimated to vary between 5 m10

and 50 m as a result of the nocturnal boundary layer evolution. This value is in good
agreement to the MH derived from concurrent Radon-222 (222Rn) measurements and
in previous studies.

1 Introduction

Air pollutants emitted at the surface are mixed into the lowest layer of the atmosphere15

that, depending on meteorological conditions, varies largely in depth from a few me-
ters to a few kilometers (Brutsaert, 1982; Stull, 1988). The atmospheric boundary layer
height, hereafter referred to as mixing height (MH), denotes the vertical extent of this
layer making the MH a key parameter for describing the physical state of the lower
troposphere. Vertical mixing within this layer is driven by turbulence that is either pro-20

duced mechanically (shear production) or produced and destroyed by buoyancy. The
atmospheric boundary layer is commonly classified as unstable, neutral or stable, de-
pending on the thermal stratification. For all conditions, various definitions of the MH
exist, which is reflected in the numerous suggestions on how to measure or parame-
terize this quantity (Seibert et al., 2000, and references therein).25
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The stable boundary layer (SBL) normally develops during night time when solar
warming stops and surface cooling due to a net negative long-wave radiation budget
induces a stable stratification of the air. This process considerably weakens turbulent
vertical mixing, leading to a MH in the range of only a few meters up to 500 m (e.g.
Stull, 1988; Mahrt and Vickers, 2002; Pahlow et al., 2001; Salmond and McKendry,5

2002; Cheng et al., 2005; Kumar et al., 2006; Steinbacher et al., 2007). A shallow and
persistent SBL over landmasses typically develops after hot and dry summer days un-
der low wind and clear sky conditions. Such conditions are of particular interest as they
represent an excellent possibility to estimate the local flux of atmospheric trace gases
(e.g. Conen et al., 2002; Buchmann et al., 2003; Steinbacher et al., 2007). Since the10

temperature profile reflects the balance between surface cooling and vertical mixing,
highly resolved measurements of the evolution of this profile provide valuable informa-
tion about the state of the SBL.

Radiosondes are the most commonly used means to provide high-resolution infor-
mation on vertical profiles of meteorological parameters such as temperature, humidity15

and wind speed (e.g. Sempreviva and Gryning, 2000; Johansson and Bergstro, 2005;
Basha and Venkat Ratnam, 2009). However, radio soundings are usually only taken at
specific times, wherefore these data do not allow studying the short term evolution of
the atmosphere. A continuous monitoring of the atmosphere is possible with remote
sensing systems such as lidars (Eichinger et al., 1993; Pahlow et al., 2005) and RASS-20

sodars (Nadeau et al., 2009). Unfortunately, these systems can be limited in vertical
resolution which makes it difficult to accurately detect very low MH or have other lim-
itations due to eye safety or noise pollution (e.g. Clifford et al., 1994; Lammert and
Boesenberg, 2005; Hennemuth and Lammert, 2006; Emeis et al., 2008). An important
tool for studying the BLH has been measurements on tall towers and tethered bal-25

loons (e.g. Clarke et al., 1971; Haugen et al., 1971; Soilemes et al., 1993; Van Ulden
and Wieringa, 1996; Schnitzhofer et al., 2009). While high spatial resolution can be
achieved with a tall tower (although associated with high costs), it has been difficult to
obtain synchronous profile measurements from a tethered balloon system.
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Raman scattering fiber optic distributed temperature sensing (DTS) has recently
proven to be a powerful tool for accurately measuring ambient temperature at high tem-
poral (1 min) and spatial (1 m) resolution over distances of several kilometers (Selker
et al., 2006a,b; Tyler et al., 2009; Roth et al., 2010). It is based on the inelastic scatter-
ing of photons (Raman effect) causing a temperature dependent intensity ratio between5

the amplitudes of the backscattered Stokes to anti-Stokes signals. Laser pulses travel
within an optical fiber and the backscattered light reaches a detector where the intensity
of the incident signals are evaluated. The exact position on the fiber of a backscattered
signal is determined from the time of flight of a light pulse. For a more detailed de-
scription of the DTS system, the reader is referred to Selker et al. (2006a) who also10

give several examples of possible applications of DTS for temperature measurements
in different environmental systems. To date, the use of DTS in environmental moni-
toring has been predominantly focused on hydrological applications (e.g. Selker et al.,
2006b; Westhoff et al., 2007; Moffett et al., 2008; Tyler et al., 2008; Hoes et al., 2009;
Vogt et al., 2010; Roth et al., 2010), although its characteristics also perfectly meet the15

requirements for atmospheric sensing.
In this context, the Nocturnal Boundary Layer Balloon Experiment (NOBALEX) was

carried out in September 2009 in a suburban area (Duebendorf, Switzerland) with the
aim to test the ability of DTS for measuring the evolution of vertical temperature pro-
files within the stable boundary layer as well as to estimate fluxes of anthropogenic20

pollutants between the surface and the atmosphere.
This paper focuses on the DTS measurements conducted during the NOBALEX

campaign, including a description of the experimental setup, a quality analysis, and the
estimation of the nocturnal MH. Results are compared with an independent estimation
of the MH based on measurements of Radon-222 (222Rn).25
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2 Setup and experiments

A schematic drawing of the experimental setup is shown in Fig. 1. A tethered bal-
loon lifting system was used to vertically install a fiber optic cable (AFL mini-link,
900 µm o.d., 0.7 gm−1) in the lowest 100 m of the atmosphere. Connected to a DTS
instrument (Agilent Technology, model N4386A), the fiber cable was fixed along the5

100 m cord of the tethered balloon (4.25 m3 helium; Wittich & Visser, Rijswijk, The
Netherlands). The fiber cable was measured in a single-ended configuration, with
a 60 m lead section of the fiber cable coiled up in a thermally insulated water bath of an
accurately known temperature (measured by several HOBO Tidbit temperature loggers
with a resolution of 0.02 ◦C and an accuracy of 0.2 ◦C), allowing for an in-situ calibration10

of the DTS system. The next 200 m of the fiber string were looped up and down along
the balloon cord. As a consequence, two temperature profiles could be measured si-
multaneously, enabling to check both the quality and consistency of the measurements
as well as the spatial repeatability of the employed system. The last 350 m section
of the fiber cable remained on the spool and was measured to avoid the presence of15

disturbing fiber termination effects in the two profiles of interest. The spatial resolution
along the fiber was 1 m.

The loss in optical intensity that weakens the backscattered signal increases with
distance along the fiber and is specific for the fiber optical cable used. To quantify and
correct for this effect, the cable was pre-calibrated in the lab prior to the experiments20

by measuring two different cable sections of 50 m each in a reference container (water
bath) of known temperature.

The integration time for the DTS measurements was set to 5 min. This period is long
enough to obtain a precision for temperature better than 0.5 ◦C and short enough to
account for the time scale of changes in the temperature profile. The response time of25

the 900 µm o.d. plastic coated fiber optic cable to a sudden ambient air temperature
change is well within the specified integration time. Averaging the two simultaneously
measured temperature profiles allows distinguishing between measurement noise and
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real fluctuations. Results show that the two simultaneously measured sections (pro-
files) of a measurement (temperature trace) are highly correlated and it is concluded
that temperature changes are well captured using an integration time of 5 min (see
below).

Atmospheric pressure was measured with high frequency (every 8 s) at approxi-5

mately 1 m below the balloon using a P300-Baro pressure sensor (Pace Scientific Inc.).
The pressure information was used to derive the height above ground of the balloon.
This procedure was considered to be more accurate than using the length of the cord
since it is not affected by the wind drag of the balloon.

To additionally measure anthropogenic pollutants in the near-surface atmosphere,10

a 150 m Teflon tube was fixed to the balloon cord and air was drawn through the tube
by a membrane pump for sampling and analysis at the ground (Keller et al., 2010).

All measurements were carried out at a station of the Swiss National Air Pollution
Monitoring Network (NABEL) in Duebendorf (47◦ 24′ N, 8◦ 36′ E, 433 m a.s.l.), within
a suburban area located about 10 km west of Zurich. All principal meteorological pa-15

rameters and a suite of trace gases are continuously monitored as part of the monitor-
ing programme. To complement this data set and to obtain a second, independent esti-
mate of the MH, measurements of 222Rn were carried out throughout the experimental
period. Ambient air concentrations of 222Rn were measured at 10 m above ground
using a dual loop two-filter system (Zaharowski et al., 2004). In addition, an accumula-20

tion chamber in combination with an Alphaguard Radon detector monitor (SAPHYMO
GmbH, Frankfurt a.M., Germany) as described in detail by Szegvary et al. (2007) was
used to determine the local exhalation rate of 222Rn.

A first measurement campaign (8 September, 4 p.m. to 9 September, 9 a.m., 2009,
UTC+1) was conducted with the goal to derive vertical profiles of greenhouse gases.25

Therefore, the balloon was repeatedly moved to discrete altitudes (100 m, 80 m, 50 m,
35 m, 20 m, 10 m, 5 m, 2 m) where it was kept for approximately 15 min before being
shifted to the next level. This procedure resulted in several profiles of reduced heights.
A second campaign (10 September, 7 p.m. to 11 September, 9 a.m., 2009, UTC+1)
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was specifically dedicated to the acquisition of vertical temperature profiles of the near-
surface atmosphere and the balloon was permanently kept at a height of 100 m above
ground, providing a complete temperature record throughout the night.

3 Data analysis and results

Measurements were collected during two nights following warm days with daily tem-5

perature maxima of 25.1 ◦C and 24.3 ◦C, respectively. By the early morning, surface air
temperatures had decreased to 9.6 ◦C and 12.4 ◦C and wind speeds at the 10 m level
never exceeded 1 ms−1 during the night. The balloon did not experience significant
horizontal drag during the nights which leads to the conclusion that wind speed was
weak within the entire 100 m slab. Mean net radiation at the surface between 7 p.m.10

to 7 a.m. was −71.0 W m−2 in the first night and −53.2 W m−2 in the second, indicating
strong surface cooling. While the first night was clear, light clouds appeared in the
second half of the second night explaining the less pronounced cooling.

3.1 Example trace

An exemplary measurement from the DTS instrument is shown in Fig. 2. The upper15

panel shows the temperature record along the first 350 m of the fiber cable measured
during a 5 min integration period, the lower panel depicts the intensity loss (in dB) which
occurred along the same distance. The intensity decreases fairly linearly along the ca-
ble at about 3 dB km−1. The absence of noticeable steps in the loss trace indicate that
the measurement is not subject to local inhomogeneities, perturbations or irregulari-20

ties along the cable (the steep drop in intensity at the beginning of the sensor cable is
a result of the fiber connection to the DTS instrument).

The mean temperature of the in-situ calibration section (10–70 m) was 19.2 ◦C during
the experiment, only 0.6 ◦C lower than the uniform temperature of 19.8 ◦C of the water
bath. This final offset correction was applied to all DTS temperature measurements.25
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The upward and downward segment (profile 1 and 2) of the vertical temperature
profiles of the atmosphere were derived using the information where the balloon was
fixed to the fiber string and at which altitude the balloon resided. The two profiles
coincide well and have a correlation coefficient R2 equal to 0.98 and a root mean
square error (RMSE) of 0.44 ◦C. These values demonstrate that the system calibration5

procedure resulted in the determination of valid set parameters for the specific optical
fiber used during the experiments.

Indeed, offset-corrected DTS temperature measurements are corroborated when
compared to conventional temperature measurements with a ventilated thermohygrom-
eter (Thygan VTP, Meteolabor, Switzerland) observed at the NABEL station, as shown10

in Fig. 3 (comparison of data at the same height above ground). Except for a short
period in the morning, DTS measurements closely follow the NABEL measurements
and no significant differences between the two DTS segments are observed.

3.2 Temperature profiles and MH estimation

The evolution of the potential temperature Θ during the second campaign is shown15

in Fig. 4a. As observed in the measurements of campaign 1, the potential tempera-
ture was almost constant throughout the entire layer before sunset at about 6:50 p.m.,
indicating a well mixed boundary layer during this time. With sunset, the air near the
surface started to cool and an inversion developed. Since this cooling is induced by the
net heat loss of the ground due to strong radiative cooling, the air next to the surface20

experiences the strongest temperature decrease. The stable atmospheric stratification
was eroded shortly after sunrise when the surface quickly warmed up again and latent
and sensible heat was transferred to the atmosphere leading to increased convection,
turbulence and mixing.
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Figure 4b shows a representative nocturnal profile of Θ. This profile can be described
with the exponential model (Stull, 1988)

Θ(z)=∆Θs ·e−z/H (1)

where ∆Θs is the potential temperature difference between the non-disturbed air aloft
and the surface (in ◦C), z is the height (in m) and H is the e-folding depth in m. H5

denotes the depth of a rectangle with abscissa ∆Θs which covers the same area as
below the exponential curve and is therefore often referred to as the mixing height
(Stull, 1988).

For every temperature profile during stable atmospheric conditions, a minimum
RMSE fit between observed and theoretical profile (Eq. 1) was calculated which pro-10

vided the MH for each time. This MH varied between 5 m and 50 m during night 2
(Fig. 4a, bold dashed line) and between 15 m and 45 m during night 1 (no figure shown).
These values are similar to the MH previously estimated for the same site under similar
meteorological conditions (Buchmann et al., 2003; Steinbacher et al., 2007).

3.3 Comparison with MH estimated from Radon-222 measurements15

Radioactive 222Rn has a precisely known lifetime of 5.5 days and is released from
soils with relatively small spatial and temporal variability, wherefore it is often used as
tracer for atmospheric dilution (e.g. Biraud et al., 2000; Schmidt et al., 2001; Conen
et al., 2002; Zaharowski et al., 2004). Relating the observed concentration increase
between time t1 and t2 to the local exhalation rate FRn222 (in Bq m−2 h−1), the MH can20

be estimated by (Sesana et al., 2003)

MH=
FRn222(1−e−λ∆t)

λ(CRn222(t2)−CRn222(t1)e−λ∆t)
(2)

with λ being the radioactive decay constant of 222Rn (7.55×10−3 h−1), and CRn222(t) the
measured 222Rn concentration at time t. From 7 September to 12 September, mea-
sured 222Rn concentrations at Duebendorf showed a distinct diurnal cycle with values25
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in the order of 5 Bq m−3 during the day but rising to more than 20 Bq m−3 during night.
Mean exhalation rates amounted to 65 Bq m−2 h−1, which is in good agreement with
the value of 67.9 Bq m−2 h−1 approximated from gamma dose rate data by Szegvary
et al. (2007) for this region. Applying Eq. (2) to the 222Rn measurements during the
two campaigns (using ∆t=2 h), a MH varying between 15 m and 50 m is derived (see5

red squares in Fig. 4a).
222Rn concentrations decreased in the second half of campaign 2, wherefore no MH

could be estimated and indicating that residual air was mixed into the SBL during this
period. This process is not reflected by the DTS measurements, showing that caution
is needed when comparing the MH derived from the 222Rn accumulation with the MH10

estimated from surface cooling since the time scales and the underlying physical prin-
ciples may differ. While the 222Rn method is representative for how effectively air has
been mixed within the considered time span of 2 h, the temperature profile depicted
by the DTS system reflects the current state of the lower atmosphere and its thermal
stability. Nevertheless, where a direct comparison is possible, the MH estimated by the15

two methods lie within a factor of 1.5. This result indicates that under stable conditions,
the evolution of the potential temperature profile is a good measure for atmospheric
mixing.

4 Conclusions

Raman scattering fiber optic distributed temperature sensing (DTS) in combination with20

a tethered balloon was successfully applied to measure the evolution of high resolu-
tion vertical temperature profiles within the atmospheric boundary layer. Results from
a series of field experiments demonstrate that DTS is very well suited for atmospheric
applications. The measurement technique and experimental setup presented in this
study constitute an important extension of past DTS applications, typically in the area25

of hydrological monitoring and geo-engineering. As a result of its relatively easy han-
dling, DTS constitutes an interesting and promising alternative for measuring atmo-
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spheric temperature profiles with high spatial and temporal resolution when compared
to conventional techniques. It may also be used as a reference for in-situ validation of
other sampling techniques such as atmospheric boundary layer lidars.

Measurements were carried out during two clear nights in September 2009 in the
presence of relatively strong temperature inversions. Most of the temperature profiles5

measured during this study closely match an exponential model, showing the evolution
of a strong inversion in the boundary layer during the observational periods. The MH
derived from the temperature profiles varied between 5 m and 50 m. This value is
similar to those estimated in previous studies and deviates less than 50% from the MH
derived from 222Rn measurements at the same site using a mass balance approach.10

The relatively high sampling frequency of the DTS measurements allows the estimation
of a MH with a temporal resolution of only 5 min.

Up to now, the method presented in this study is restricted to low wind conditions,
since the tethered balloon system suffers from strong wind drag otherwise. For using
the fiber optic DTS system continuously and under more challenging weather condi-15

tions, installing it on a tall tower or mast might be an interesting alternative.
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Fig. 1. Illustration of the experimental setup.
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Fig. 2. DTS record of 11 September, 02:20 a.m. along the first 350 m of the fiber cable.
(a) Temperature measurements in ◦C, the shaded areas show the location of the calibration
section (water bath) and the upward and downward atmospheric profile fiber cable sections.
(b) Loss of signal intensity (dB).
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Fig. 3. Comparison of DTS temperatures measured 2 m above ground and air temperature
measurements from the collocated NABEL network station (cf. Fig. 1 for definition of profiles).
Correlations between DTS measurements and NABEL data are given in the legend.
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Fig. 4. (a) Evolution of potential temperature Θ during campaign 2 (10 Sep, 7 p.m.–11 Sep,
9 p.m.). The bold dashed line and the red squares denote the mixing heights as determined
from exponential profile fits and 222Rn measurements, respectively. The white vertical band is
a period of missing data; (b) Example of a DTS measurement profile for 11 Sep, 2 a.m. (black)
and the corresponding best fit of an exponential curve (red). Mixing height H is shown in blue.
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